

Available online at www.sciencedirect.com

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 689 (2004) 332-344

www.elsevier.com/locate/jorganchem

Synthesis, characterization and reactivity of the molybdenum(VI) complex [MoCl(NAr)₂(CH₂CMe₂Ph)] $(Ar = 2,6-Pr_2^iC_6H_3)$

Vernon C. Gibson ^a, Carl Redshaw ^{b,*}, Gary L.P. Walker ^a, William Clegg ^c, Mark R.J. Elsegood ^d

^a Department of Chemistry, Imperial College, South Kensington, London SW7 2AY, UK

^b Wolfson Materials and Catalysis Centre, School of Chemical Sciences and Pharmacy, The University of East Anglia, Norwich NR4 7TJ, UK ^c School of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK ^d Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

Received 15 September 2003; accepted 18 October 2003

Abstract

The compounds [MoCl(NAr)₂R] (R = CH₂CMe₂Ph (1) or CH₂CMe₃(2); Ar = 2,6-Pr₂ⁱC₆H₃) have been prepared from [MoCl₂(NAr)₂(dme)] (dme = 1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl₂(NAr)(NBuⁱ)(dme)] affords [MoCl(NAr)(NBuⁱ)(CH₂CMe₂Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)₂(CH₂CMe₂Ph)] (4) (Cp = cyclopentadienyl), [MoInd(NAr)₂(CH₂CMe₂Ph)] (5) (Ind = Indenyl), [Mo(OBuⁱ)(NAr)₂(CH₂CMe 2Ph)] (6), [MoMe(NAr)₂(CH₂CMe₂Ph)] (7), [MoMe(PMe₃)(NAr)₂(CH₂CMe 2Ph)] (8) (formed in the presence of PMe₃) and [Mo(NHAr)(NAr)₂(CH₂CMe₂P h)](9). In the latter case, a by-product {[Mo(NAr)₂(CH₂CMe₂Ph)]₂(µ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with *cis* near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Synthesis; Bis(imido) molybdenum; Monoalkyl; Crystal structures; Agostic interactions

1. Introduction

We have reported the synthesis and characterization of a number of four-coordinate bis(imido) dialkyl complexes of the form $[Mo(NR^1)(NR^2)(R^3)_2]$ ($R^1 = CMe_3$, $R^2 = 2,6$ - $Pr_2^iC_6H_3$), $R^3 = CH_2CMe_3$) and their subsequent reactions with phenols to yield well-defined metathesis catalysts [1a]. We have also described the mixed-imido dialkyls $[Mo(NR^1)(NR^2)(R^3)_2]$ ($R^1 = CMe_3$, $R^2 = C_6F_5$, $R^3 = CH_2CMe_2Ph$) [1b]. Subsequently, some related compounds such as $\{MoCpCl[(CH_2)_n(2-C_6H_4N)_2]\}$ and $\{Mo(OBu')_2[(CH_2)_n(2-C_6H_4N)_2]\}$ (n = 1, 2) were prepared [2]. The synthesis and reactivity of the d⁰ $[Mo(NAr)_3]$ core (Ar = 2, 6- $Pr_2^iC_6H_3$) has been extensively studied by Morrison and Wigley [3]. We have now extended our studies to the monoalkyl complexes $[MoCl(NAr)_2(R)]$ ($R = CH_2CMe_2Ph$ and CH_2 CMe₃) and describe a number of derivatives made by replacing Cl with carbon, oxygen and nitrogen ligands.

2. Results and discussion

Interaction of $[MoCl_2(NAr)_2(dme)]$ (Ar = 2,6-Pr₂ⁱC₆ H₃) with one equivalent of Grignard reagent RMgCl in diethyl ether at -78 °C affords, after work-up, multigram quantities of the monoalkyl complexes $[MoCl(NAr)_2R]$ (R = CH₂CMe₂Ph (1) or CH₂CMe₃ (2)) as orange-red crystalline solids. The compounds doubtless have the same basic structure; the molecular structure of 1, determined by X-ray crystallography, is shown in Fig. 1, and selected bond lengths and angles are given in Table 1.

^{*}Corresponding author. Tel.: +44-1603-593137; fax: +44-1603-592003.

E-mail address: Carl.Redshaw@uea.ac.uk (C. Redshaw).

Fig. 1. Molecular structure of 1, without most H atoms and minor disorder components, and with key atoms labelled. Displacement ellipsoids here and in other figures are drawn at the 50% probability level.

The coordination geometry about the metal centre is best described as distorted tetrahedral with angles in the range 99.91(7)°–122.67(5)°. The two *cis* imido groups are similar; the Mo–N distances are essentially equal, 1.7364(15) and 1.7435(15) Å, with Mo–N–C angles of 161.59(13)° and 152.94(12)°, respectively. The latter is considered to be at the lower limit regarded as a 'linear' imido group acting as a four-electron donor [4]. An interesting feature is the presence of an α -agostic interaction involving a hydrogen atom H(1A) on the neophyl methylene carbon. The metal–hydrogen distance (resulting from free refinement) is 2.46(2) Å with an Mo– C(1)–H(1A) angle of 100.0(13)°, comparable with the two α -agostic interactions found in the related mixedimido complex [Mo(NAr)(NBu^t)(CH₂CMe₃)₂] [1].

The mixed-imido complex $[MoCl(NAr)(NBu^t)(CH_2 CMe_2Ph)]$ (3) is similarly formed from $[MoCl_2(NAr) (NBu^t)(dme)]$ and neophyl Grignard in diethyl ether.

The mono-neophyl complex 1 is a useful starting material for the synthesis of four- and five-coordinate

Table 1 Selected bond lengths (Å) and angles (°) for 1 $\!\!\!$

elected bond lengths (A) ar	id angles (*) for I			
Mo-Cl	2.3295(5)	Mo-C(1)	2.1296(18)	
Mo-N(1)	1.7364(15)	Mo-N(2)	1.7435(15)	
N(1)–C(11)	1.401(2)	N(2)-C(23)	1.399(2)	
Cl-Mo-C(1)	122.67(5)	Cl-Mo-N(1)	111.53(5)	
Cl-Mo-N(2)	108.24(5)	C(1)-Mo-N(1)	105.07(7)	
C(1)-Mo-N(2)	99.91(7)	N(1)-Mo-N(2)	108.21(7)	
Mo-C(1)-C(2)	115.55(12)	Mo-N(1)-C(11)	161.59(13)	
Mo-N(2)-C(23)	152.94(12)			
$\begin{array}{c} Pr^{i} & Pr^{i} \\ Pr^{i} & N & Me \\ PMe_{3} \\ Pr^{i} \\ Pr^{i} \\ 8 \end{array}$	$Pr^{i} \qquad Pr^{i} \qquad P$	$Pr^{i} \qquad Pr^{i} \qquad Pr^{i} \qquad V^{i}$ $Pr^{i} \qquad Pr^{i} \qquad Pr^{i} \qquad Pr^{i} \qquad V^{i}$ $Pr^{i} \qquad Pr^{i} \qquad Pr^{i}$	$Pr^{i} \xrightarrow{Pr^{i}} Pr^{i} Pr^{i} \xrightarrow{N} Pr^{i}$	
	iii)	Cl 1 iii)		
	Pr ⁱ Pr ⁱ Pr	Pr ⁱ Pr ⁱ	Pr ⁱ	
Pr				

Scheme 1. Reagents and conditions. (i) LiCp, $-78 \,^{\circ}$ C, Et₂O, 24 h; (ii) Li(Indenyl), $-78 \,^{\circ}$ C, Et₂O, 24 h; (iii) LiOBu^t, $-78 \,^{\circ}$ C, Et₂O, 12 h; (iv) MeMgI, 78 $^{\circ}$ C, Et₂O, 12 h; (v) PMe₃, $-198 \,^{\circ}$ C, pentane; (vi) LiNHAr, Et₂O, 1 h; (vi) [dried in vacuo, 50 $^{\circ}$ C, 12 h; Et₂O, 48 h, 25 $^{\circ}$ C] × 3.

 $\frac{\text{Table 2}}{{}^{1}\text{H NMR data (benzene-d_6, {}^{a} \text{ CDCl}_3, {}^{b} \text{ 298 K})}$

Compound	Shift	Rel. integration	Multiplicity	J (Hz)	Assignment
1 ^a	7.43	2	d	$^{3}J_{\rm HH}$ 8.5	0-C6H5
	7 24	2	t	3 Lun 7 7	m-C/H
	7.12	1	d	*	n C H
	/.12	1	u		$p-C_{6}II_{5}$
	6.92-6.85	5	m		o, m, p-C ₆ H ₅
	3.59	4	sept	${}^{3}J_{\rm HH}$ 6.9	$CHMe_2$
	3.01	2	s		CH ₂ CMe ₂ Ph
	1.57	6	S		CH ₂ CMe ₂ Ph
	1.08	24	t	$^{3}J_{\rm HH}$ 7.1	CHMe ₂
					-
2 ^a	6.96-6.88	6	m		m, p-C ₆ H ₃ ^{<i>i</i>} Pr ₂
	3.67	4	sept	${}^{3}J_{\rm HH}$ 6.9	$CHMe_2$
	2.79	2	S		CH ₂ CMe ₃
	1.23	6	S		CH ₂ CMe ₃
	1 13	12	d	3 <i>L</i> ₁₁₁ 69	CHMea
	1.09	12	d	${}^{3}L_{\rm HH}$ 6.9	CH Mes
	1.09	12	u	JHH 0.5	enne ₂
3 ^a	7.39	2	dd	$^{3}J_{\rm HH}$ 8.0	$o-C_6H_5$
				${}^{4}J_{\rm HH} = 0.8$	
	7 22	2	t	$^{3}L_{2}$ 77	mC.H.
	7.22	2	ι +		$m - C_{6115}$
	/.09	2	t	$J_{\rm HH}$ /.3	$p-C_6H_5$
	7.04–6.90	3	m	2	m, p -C ₆ H ₃ ^{\prime} Pr ₂
	3.58	2	sept	${}^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	3.18	1	d	$^{2}J_{\rm HH}$ 13.5	CH ₂ CMe ₂ Ph
	2.37	1	d	$^{2}J_{\rm HH}$ 13.5	CH ₂ CMe ₂ Ph
	1.58	3	s		CH ₂ CMe ₂ Ph
	1.50	2	3		$CH CM_2 Dh$
	1.34	3	8	3	
	1.28	6	d	$^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	1.23	6	d	$^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	1.00	9	S		NCMe ₃
4b	7.60	2	d	31 76	. С Н
+	7.02	2	ŭ	$J_{\rm HH}$ 7.0	0-C6115
	/.46	2	t	$J_{\rm HH}$ /./	$m-C_6H_5$
	7.32	1	t	$^{3}J_{\rm HH}$ 7.2	$p-C_6H_5$
	7.02	4	d	${}^{3}J_{\rm HH}$ 7.7	m-C ₆ H ₃ ^{<i>i</i>} Pr ₂
	6.95-6.91	2	m		$p-C_6H_3^iPr_2$
	5.77	5	s		C _s H _s
	3 54	4	sent	3 Lun 6.9	CHMe ₂
	2.02	2	sept	UHH 0.5	CH CMa Ph
	3.02	2	8		
	1.42	0	S	37 60	CH ₂ CMe ₂ Pn
	1.14	12	d	$J_{\rm HH}$ 6.9	$CHMe_2$
5 b	7 79	2	d	3 Lun 7.8	o-C.H.
5	7.50	2	t	3HH 7.0	C H
	7.39	2	l	$J_{\rm HH}$ 7.7	<i>m</i> -C ₆ п ₅
	7.40	1	t	$J_{\rm HH}$ /.3	$p-C_6H_5$
	7.06	2	m		$H_{5,6}-C_9H_7$
	6.96-6.82	8	m		m, p-C ₆ H ₃ ⁱ Pr ₂
					$H_{47} - C_9 H_7$
	6.10	2	d	$^{3}L_{\rm HII}$ 3.0	HCoH
	5.03	- 1	t t	$^{3}I_{}$ 2 2	Ц. С Ц
	2.73	1	t har sout	J _{HH} 3.5	Π_2 - $C_9\Pi_7$
	3.19	4	br. sept		CHMe ₂
	2.66	2	8		CH ₂ CMe ₂ Ph
	1.49	6	S		CH ₂ CMe ₂ Ph
	1.06	24	pseudo t	${}^{3}J_{\rm HH}$ 6.5	$CHMe_2$
C 3	7.52	2	11	37 01	C II
6 ^a	7.53	2	dd	$^{5}J_{\rm HH}$ 8.1	$o-C_6H_5$
	7.01	2		$J_{\rm HH} 1.1$	0.17
	7.21	2	t	зJ _{НН} 7.8	$m-C_6H_5$
	7.08-6.90	7	m		$m-C_6H_5$
					m, p-C ₆ H ₃ ^{<i>i</i>} Pr ₂
	3.73	4	sept	${}^{3}J_{\rm HH}$ 6.9	$CHMe_2$
	3.06	2	S		CH ₂ CMe ₂ Ph
	1.68	6	8		CH ₂ CMe ₂ Ph
	1.00	0	5		OCM-
	1.29	9	s	3 * 5 0	OCMe ₃
	1.14	24	d	⁻ J _{нн} 6.9	CHMe ₂

Table 2 (continued)

Compound	Shift	Rel. integration	Multiplicity	J (Hz)	Assignment
7 ^b	7.65	2	d	${}^{3}J_{\rm HH}$ 7.5	0-C6H5
	7.43	2	t	$^{3}J_{\rm HH}$ 7.3	$m-C_6H_5$
	7.34	1	t	${}^{3}J_{\rm HH}$ 7.1	$p-C_6H_5$
	7.10-6.95	6	m		$m, p-C_6H_3^iPr_2$
	3.47	4	sept	$^{3}J_{\rm HH}$ 6.8	CHMe ₂
	2.48	2	s		CH ₂ CMe ₂ Ph
	1.65	6	S		CH ₂ CMe ₂ Ph
	1.11	12	d	³ J _{HH} 6.8	CHMe2
	1.08	12	d	${}^{3}J_{\rm HH}$ 6.8	CHMe2
	0.37	3	S		CH ₃
					;
8 ^a	7.51	2	dd	${}^{3}J_{\rm HH}$ 8.4	$o-C_6H_5$
				${}^{4}J_{ m HH}$ 1.2	
	7.18	2	t	${}^{3}J_{\rm HH}$ 7.3	$m-C_6H_5$
	7.04-6.95	7	m		$p-C_6H_5$
					m, p-C ₆ H ₃ ^{<i>i</i>} Pr ₂
	3.89	4	sept	${}^{3}J_{\rm HH}$ 6.8	CHMe ₂
	2.53	2	S		CH ₂ CMe ₂ Ph
	1.51	6	S		CH_2CMe_2Ph
	1.24	12	d	${}^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	1.17	12	d	${}^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	0.91	3	S	1111	CH ₃
	0.79	9	d	${}^{3}J_{\rm HP}$ 4.5	PMe_2
				° nr	
9 ^b	7.61	2	S		$o-C_6H_5$
	7.32	2	t		$m-C_6H_5$
	7.20-6.80	11	m		$p-C_6H_5$
					NHAr
					C_6H_3 ^{<i>i</i>} Pr_2
					NHAr
					NAr
	3.46	2	t		CHMe ₂
	3.40	4	sept	${}^{3}J_{\rm HH}$ 6.8	CHMe ₂
	2.81	2	S		CH ₂ CMe ₂ Ph
	1.65	6	S		CH ₂ CMe ₂ Ph
	1.32	12	d	${}^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	1.26	12	d	${}^{3}J_{\rm HH}$ 6.8	CHMe ₂
					-
10 ^a	7.58	2	dd	${}^{3}J_{\rm HH}$ 8.4	$o-C_6H_5$
				${}^{4}J_{\rm HH}$ 1.0	
	7.21	2	t	$^{3}J_{\rm HH}$ 7.3	$m-C_6H_5$
	7.04	1	d	${}^{3}J_{\rm HH}$ 7.4	$p-C_6H_5$
	6.92-6.85	6	m		m, p-C ₆ H ₃ ^{<i>i</i>} Pr ₂
	3.71	4	sept	${}^{3}J_{\rm HH}$ 6.8	CHMe ₂
	3.29	2	S		CH ₂ CMe ₂ Ph
	1.86	6	S		CH_2CMe_2Ph
	1.15	12	d	${}^{3}J_{\rm HH}$ 6.8	$CHMe_2$
	1.07	12	d	${}^{3}J_{\rm HH}$ 6.8	$CHMe_2$
			_	2	
110	7.49	2	d	$^{3}J_{\rm HH}$ 8.4	$o-C_6H_5$
	7.30	2	t	$^{3}J_{\rm HH}$ 7.7	$m-C_6H_5$
	7.15	1	t	³ J _{НН} 7.5	$p-C_6H_5$
	7.10-6.80	7	m		NH ^t Bu
					m, p-C ₆ H ₃ ^{<i>i</i>} Pr ₂
	3.48	4	sept	${}^{3}J_{\rm HH}$ 6.8	CHMe ₂
	2.55	2	S		CH ₂ CMe ₂ Ph
	1.55	6	S		CH_2CMe_2Ph
	1.18	9	S		NCMe ₃
	1.07	12	d	${}^{3}J_{\rm HH}$ 6.9	$CHMe_2$
	1.04	12	d	${}^{3}J_{\rm HH}$ 6.9	CHMe ₂

s, Singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; br, broad; *, obscured.

Table 3 ¹³C NMR data (benzene-d₆,^a CdCl₃, ^b 298 K)

Compound	Shift	Multiplicity	J (Hz)	Assignment
1 ^a	153.17	m		o-C ₆ H ⁱ ₃ Pr ₂
	148.31	m		ipso-C ₆ H ₅
	143.318			$inso-C_6H_1^iPr_2$
	129.30	dd	$^{1}L_{\rm CH}$ 160.2	$n-C_cH^i Pr_2$
	129.30	uu	${}^{2}I_{\rm CH} = 8.1$	p = 0.113112
	127 49	m	*	m-C.H.
	127.19	dt	*	$n C H_{\epsilon}$
	127.19	dt	¹ I 157 74	p-C ₆ H
	120.55	ut m	$J_{\rm CH}$ 150.2	$0 - C_6 \Pi_5$
	72.97	111	J _{CH} 139.5	$m - C_6 \Pi_3 \Gamma_{12}$
	/3.8/	ui	³ J _{CH} 120.4	CH_2CMe_2PII
	20.50		$J_{\rm CH}$ 4.8	
	39.58	S	11 1200	CH_2CMe_2Ph
	31.99	qq	$^{1}J_{\rm CH}$ 126.0	CH_2CMe_2Ph
			$^{3}J_{\rm CH}$ 4.4	
	28.70	d	$^{1}J_{\rm CH}$ 128.3	$CHMe_2$
	23.70	qt	$^{1}J_{\rm CH}$ 126.2	$CHMe_2$
			${}^{3}J_{\rm CH}$ 5.0	
	23.54	qt	${}^{1}J_{\rm CH}$ 126.2	$CHMe_2$
			$^{3}J_{\rm CH}$ 5.0	
2 ^a	155.22	S		ipso-C ₆ H ⁱ ₃ Pr ₂
	143.22	S		$o-C_6H_3^iPr_2$
	127.58	d	*	$p-C_6H_2^iPr_2$
	123.05	d	$^{1}J_{CH}$ 157.8	$m-C_6H_2^{i}Pr_2$
	77 51	t	${}^{1}J_{CH}$ 120 7	CH ₂ CMe ₂
	33 53	s	UCH 12017	CH ₂ CMe ₂
	32.62	3	$^{1}I_{}$ 124.2	CH ₂ CM ₂
	28.02	4	^{1}I 127.5	CHCM2
	28.95	a	J _{CH} 127.5	
3	23.49	q	J _{CH} 127.9	
3 ^a	153.69	S		$lpso-C_6H_3Pr_2$
	149.96	S		ipso-C ₆ H ₅
	141.79	S	1	o-C ₆ H ^t ₃ Pr ₂
	128.94	dd	$^{1}J_{\rm CH}$ *	$o-C_6H_5$
			$^{2}J_{\rm CH}$ 7.6	
	126.67	d	$^{1}J_{\rm CH}$ 160.1	p-C ₆ H ₅
	126.49	dt	$^{1}J_{\rm CH}$ 160.4	p-C ₆ H ⁱ ₃ Pr ₂
			${}^{2}J_{\rm CH}$ 7.5	
	126.01	dt	${}^{1}J_{\rm CH}$ 159.9	$m-C_6H_5$
	122.93	m	${}^{1}J_{\rm CH}$ 157.1	$m-C_6H_3^iPr_2$
	73.41	S		NCMe ₃
	71.16	t	$^{1}J_{\rm CH}$ 125.6	CH ₂ CMe ₂ Ph
	39.41	s		CH ₂ CMe ₂ Ph
	32.57	a	${}^{1}J_{\rm CH}$ 126.3	CH ₂ CMe ₂ Ph
	32.04	a	${}^{1}J_{CH}$ 126.2	CH ₂ C <i>Me</i> ₂ Ph
	30.98	r D	${}^{1}J_{CH}$ 127.4	NCMe ₂
	28.81	d	$^{1}L_{\rm CH}$ 128.2	CHMea
	23.76	a a	$^{1}L_{\rm ex}$ 125.9	CHMe ₂
	23.70	4	$^{1}I_{}$ 125.9	CHM ₂
1b	152.60	q	JCH 125.9	$C H^{i} Pr$
-	153.00	8		$ipso-C_6\Pi_3\Pi_2$
	132.30	8		$lpso-C_6\Pi_5$
	140.98	S	1.4 1.60.0	∂ -C ₆ H ₃ PT ₂
	128.20	dd	² J _{CH} 160.0	0-C ₆ H ₅
	10(0)		² J _{CH} /./	C HID
	126.04	dt	¹ J _{CH} 156.5	p-C ₆ H ^t ₃ Pr ₂
			$^{2}J_{\rm CH}$ 6.9	
	125.73	dt	$^{1}J_{\rm CH}$ 160.8	$p-C_6H_5$
			$^{2}J_{\rm CH}$ 7.4	
	123.74	d	$^{1}J_{\rm CH}$ 159.8	$m-C_6H_5$
	122.38	ddd	$^{1}J_{\rm CH}$ 155.1	m-C ₆ H ⁱ ₃ Pr ₂
			$^{2}J_{\rm CH}$ 7.2	-
			$^{3}J_{\rm CH}$ 5.1	
	105.91	m	$^{1}J_{\rm CH}$ 175.2	C_5H_5
	47.60	t	$^{1}J_{\rm CH}$ 126.3	CH ₂ CMe ₂ Ph
	41.80	S	- Ch	$CH_2 CMe_2Ph$

Table 3 (continued)

Compound	Shift	Multiplicity	J (Hz)	Assignment
	34.16	q	${}^{1}J_{\rm CH}$ 126.0	CH_2CMe_2Ph
	27.68	d	${}^{1}J_{\rm CH}$ 126.3	CHMe ₂
	23.88	a	${}^{1}J_{CH}$ 126.3	CH <i>Me</i> ₂
	23.83	г П	${}^{1}J_{CH}$ 126.3	CHMe2
5 b	153.17	4 S	ven reore	$inso-C_{i}H^{i}Pr_{2}$
5	152.64	s		inso-C.H.
	141.00	5		$c C_{1}H^{i}Pr$
	128.26	5	*	$0 - C_{6} H_{13} H_{2}$
	126.20	111		$0-C_6\Pi_5$
	127.08	S	*	$lpso-C_9H_7$
	125.60	m		$m-C_6H_5$
	125.96	dt	$^{1}J_{\rm CH}$ 162.4	$p-C_6H_5$
			$^{2}J_{\rm CH}$ /.0	а. а.н.
	125.61	dd	$^{1}J_{\rm CH}$ 160.4	$C_{4,7}$ - C_9H_7
			$^{2}J_{\rm CH}$ 7.6	
	123.88	m	$^{1}J_{\rm CH}$ 159.6	p-C ₆ H ⁱ ₃ Pr ₂
	122.06	m	$^{1}J_{\rm CH}$ 155.5	$m-C_6H_3^iPr_2$
	121.31	dd	$^{1}J_{\rm CH}$ 164.4	$C_{5,6}-C_9H_7$
			${}^{2}J_{\rm CH}$ 4.9	
	110.44	dt	${}^{1}J_{\rm CH}$ 171.7	C_2 - C_9H_7
			${}^{2}J_{\rm CH}$ 4.2	
	89.94	Br. d	$^{1}J_{\rm CH}$ 172.5	$C_{1,3}-C_9H_7$
	51.29	t	${}^{1}J_{\rm CH}$ 126.3	CH ₂ CMe ₂ Ph
	41.32	S		CH ₂ CMe ₂ Ph
	34 58	a	$^{1}J_{CH}$ 126.0	CH ₂ C <i>Me</i> ₂ Ph
	27.63	4 d	$^{1}L_{\rm CH}$ 128.3	CHMea
	24.56	at	$^{1}L_{\rm err}$ 125.7	CH <i>Me</i>
	27.50	qt	^{1}L 125.7	CHMe
6 a	152.47	qt	J _{CH} 125.5	$CHMe_2$
0	153.47	8		$lpso-C_6H_3H_2$
	132.37	S		$lpso-C_6H_5$
	142.28	S	2.4.16.2	$0 - C_6 H_3^2 P r_2$
	128.49	dd	$^{2}J_{\rm CH}$ 16.2	$o-C_6H_5$
	125.87	m	*	$p-C_6H_3^{\dagger}Pr_2$
	125.79	m	*	$p-C_6H_5$
	125.75	d	$^{1}J_{\rm CH}$ 160.1	$m-C_6H_5$
	122.84	m	$^{1}J_{\rm CH}$ 155.9	$m-C_6H_3^iPr_2$
	81.84	S		$OC(CH_3)_3$
	63.68	t	$^{1}J_{\rm CH}$ 125.6	CH ₂ CMe ₂ Ph
	39.71	S		CH_2CMe_2Ph
	32.62	q	${}^{1}J_{\rm CH}$ 125.9	CH_2CMe_2Ph
	32.32	q	$^{1}J_{\rm CH}$ 125.9	$OC(CH_3)_3$
	28.60	d	$^{1}J_{\rm CH}$ 128.0	CHMe ₂
	23.74	q	$^{1}J_{\rm CH}$ 125.5	CHMe ₂
7 ^b	152.73	S		inso-C ₆ H ⁱ ₂ Pr ₂
	148.52	S		inso-C ₆ H ₅
	142.33	s		ρ -C H^{i} Pr
	128.98	dd	${}^{1}J_{CH} *$	ρ -C H_{ε}
	12000		${}^{2}I_{\rm CH}$ 7.4	0 06113
	126.84	dt	$^{1}L_{\rm ext}$ 160.8	n-C.H.
	120.04	at	${}^{2}I_{}$ 7 1	p - c_{6} m_{5}
	126.25	4+	J_{CH} /.1	n C HiDr
	120.23	at	$J_{\rm CH}$	p -C ₆ Π_3 Π_2
	125.24	1	-J _{CH} 3.9	C H
	125.24	d	J _{CH} 159.2	$m-C_6H_5$
	122.32	a	¹ J _{CH} 155.3	$m-C_6H_3Pr_2$
	72.03	t	'J _{CH} 123.4	CH_2CMe_2Ph
	38.70	S	1 -	CH ₂ CMe ₂ Ph
	34.86	q	$^{1}J_{\rm CH}$ 126.8	CH_3
	32.75	m	$^{1}J_{\rm CH}$ 128.8	CH_2CMe_2Ph
	28.13	d	${}^{1}J_{\rm CH}$ 128.4	CHMe ₂
	23.47	q	${}^{1}J_{\rm CH}$ 126.3	$CHMe_2$
	23.13	q	${}^{1}J_{\rm CH}$ 125.0	CHMe ₂
8 ^a	153.46	s		$ipso-C_6H_3^iPr_2$
	153.19	S		ipso-C ₆ H ₅
	143.36	S		$o-C_6H_2^iPr_2$
	128.78	dd	${}^{2}J_{C^{11}}$ 6.1	0-C6H5
	120170		- un sta	

Table 3 (continued)

Compound	Shift	Multiplicity	J (Hz)	Assignment
	125.98	m	*	$p-C_6H_3^iPr_2$
	125.91	d	*	$p-C_6H_5$
	125.43	d	$^{1}J_{\rm CH}$ 159.2	$m-C_6H_5$
	122.90	m	$^{1}J_{\rm CH}$ 159.7	$m-C_6H_3^iPr_2$
	59.19	t	$^{1}J_{\rm CH}$ 125.9	CH ₂ CMe ₂ Ph
	41.09	S		$CH_2 CMe_2 Ph$
	33.13	m	$^{1}J_{\rm CH}$ 123.6	CH_2CMe_2Ph
	28.18	d	${}^{1}J_{\rm CH}$ 126.2	CHMe ₂
	24.70	a	${}^{1}J_{CH}$ 125.9	CH <i>Me</i> ₂
	23.98	л П	${}^{1}J_{\rm CH}$ 125.8	CH ₂
	23.55	4	${}^{1}J_{CH}$ 125.8	CHMea
	14 74	da	${}^{2}I_{\rm CP}$ 5.2	PMe ₂
9 b	152.54	s	ver the	inso-NHC _c H ⁱ Pr ₂
-	148.63	s		$inso-NC_cH^i Pr_2$
	142.41	c		$a_{\rm NC}$ \mathbf{H}^{i} \mathbf{Pr}_{a}
	138.90	s		a -NHC H^i Pr
	125.13	d	¹ I 150 0	$n NC H^{i} Pr$
	123.13	d	$^{1}L_{m}$ 160 1	p -NC ₆ $\Pi_3 \Pi_2$ p NHC ₁ H^i Pr
	123.38	u	J _{CH} 100.1	p-NIIC ₆ II ₃ FI ₂ m NHC HiPr
	122.92	III m	*	$m - N \Pi C_6 \Pi_3 \Gamma_1_2$
	122.51	111	1 101 9	m - $NC_6\Pi_3\Pi_2$
	66.57	t	J _{CH} 121.8	CH_2CMe_2Ph
	39.84	S	11 106 5	CH_2CMe_2Ph
	32.18	q	$^{1}J_{\rm CH}$ 126.5	CH_2CMe_2Ph
	28.28	d	$^{1}J_{\rm CH}$ 127.4	
	24.05	q	¹ J _{CH} 125.9	CH <i>Me</i> ₂
	23.61	q	$^{1}J_{\rm CH}$ 125.8	$CHMe_2$
	23.23	q	$^{1}J_{\rm CH}$ 125.9	CHMe ₂
10 ^a	153.69	S		$ipso-C_6H_3^{l}Pr_2$
	153.01	S		$ipso-C_6H_5$
	142.52	S		$o-C_6H_3^iPr_2$
	128.59	dd	$^{1}J_{\mathrm{CH}}$ *	$o-C_6H_5$
			${}^{2}J_{\rm CH}$ 7.6	
	126.40	d	$^{1}J_{\rm CH}$ 159.9	$p-C_6H_3'Pr_2$
	125.96	dt	$^{1}J_{\rm CH}$ 161.2	$p-C_6H_5$
			$^{2}J_{\rm CH}$ 7.6	
	125.49	dt	$^{1}J_{\rm CH}$ 154.3	$m-C_6H_5$
			${}^{2}J_{\rm CH}$ 6.9	
	122.86	m	$^{1}J_{\rm CH}$ 156.3	m-C ₆ H ⁱ ₃ Pr ₂
	68.54	t	${}^{1}J_{\rm CH}$ 124.3	CH ₂ CMe ₂ Ph
	39.88	S		CH_2CMe_2Ph
	31.83	q	$^{1}J_{\rm CH}$ 128.6	CH ₂ CMe ₂ Ph
	28.78	d	$^{1}J_{\rm CH}$ 127.6	$C \operatorname{HMe}_2$
	23.78	qt	$^{1}J_{\rm CH}$ 125.9	CHMe ₂
	23.51	qt	${}^{1}J_{\rm CH}$ 125.7	CHMe ₂
11 ^b	152.96	S		$ipso-C_6H_3^iPr_2$
	152.62	S		$ipso-C_6H_5$
	141.59	S		$o-C_6H_3^iPr_2$
	128.00	m	${}^{1}J_{\rm CH}$ 149.0	$m-C_6H_5$
	126.02	dt	$^{1}J_{\rm CH}$ 156.2	$p-C_6H_3^iPr_2$
			${}^{2}J_{\rm CH}$ 7.0	
	125.25	dt	$^{1}J_{\rm CH}$ 159.9	$p-C_6H_5$
			$^{2}J_{\rm CH}$ 7.3	-
	124.40	d	$^{1}J_{\rm CH}$ 159.4	$o-C_6H_5$
	122.26	m	${}^{1}J_{\rm CH}$ 156.8	$m-C_6H_3^iPr_2$
	61.55	S		NCMe ₃
	57.78	t	$^{1}J_{\rm CH}$ 120.9	CH ₂ CMe ₂ Ph
	39.91	S		CH ₂ CMe ₂ Ph
	33.18	a	$^{1}J_{CH}$ 125.8	NCMe ₃
	32.80	-1 D	${}^{1}J_{\rm CH}$ 126.5	CH ₂ CMe ₂ Ph
	28.29	r d	${}^{1}J_{\rm CH}$ 127.4	CHMe
	23.42	m	$^{1}J_{\rm CH}$ 125.8	CHMe ₂
	23.09	m	$^{1}J_{\rm CH}$ 125.0	CHMe
	40.00	***	VCH 120.7	CIIII02

s, Singlet; d, doublet; t, triplet; q, quartet; sept, septet; m, multiplet; br, broad; *, obscured.

bis(imido) complexes of molybdenum(VI); see Scheme 1. NMR data (¹H and ¹³C) of complexes 1 through 11 are presented in Tables 2 and 3.

Interaction of 1 with LiCp (Cp = cyclopentadienyl) or LiInd (Ind = Indenyl) in diethyl ether at -78 °C gives the compounds [MoR'(NAr)₂(CH₂CMe₂Ph)] (R' = Cp (4) or Ind (5)), respectively, in high yields. These compounds are very soluble in hydrocarbons and can be crystallized from pentane at -40 °C. The molecular structure of 4 is shown in Fig. 2, with selected bond lengths and angles in Table 4. The molecule has a distorted tetrahedral geometry with an approximate (i.e. non-crystallographic) mirror plane of symmetry containing the metal and the methylene C(1) atom of the neophyl group and bisecting the Cp ligand.

The angles around the molybdenum centre vary from $95.85(6)^{\circ}$ to $106.33(7)^{\circ}$, excluding the angles involving the Cp ring carbon atoms. The Mo–C (Cp) bond lengths range from 2.3927(18) to 2.5081(18) Å, indicating a slight tilting away from the sterically bulky neophyl group. As in 1, the two imido groups are similar: Mo–N 1.7610(15) and 1.7693(14) Å, Mo–N–C 163.99(14)^{\circ} and

C(14) C(15) C(15) C(11) C(11) C(11) C(11) C(11) C(12) C(12)

Fig. 2. Molecular structure of **4**, without most H atoms and minor disorder components, and with key atoms labelled.

Table 4 Selected bond lengths (\mathring{A}) and angles (°) for 4

171.11(14)°. Interestingly, there is also a similar α -agostic interaction involving H(1B) and the metal centre: Mo-H(1B) = 2.56(2) Å, Mo-C(1)-H(1B) = 99.0(11)°. The related compound [CpMo(NAr)₂(NHAr)] has been reported previously [3].

The structure of the compound [MoInd(NAr)₂ (CH₂CMe₂Ph)] (5) is shown in Fig. 3; selected bond lengths and angles are given in Table 5. As previously observed in compounds 1 and 4, the geometry about the molybdenum centre is distorted tetrahedral with nearlinear *cis* arylimido ligands $(Mo-N-C = 157.41(14)^{\circ}$ and $169.35(16)^{\circ}$). The bonding of the indenyl ring, for which the Mo-C distances differ significantly, in the range 2.350(2)–2.641(2) Å, is best described as slipped, i.e. η^3 . The indenyl ring also displays a slight puckering; the greatest deviations from the mean plane of the ring atoms are for C(36) (-0.0451 Å) and C(37) (+0.0450 Å) (+ denotes closer to the metal). There is no clear evidence of α -agostic bonding in 5 (Mo–H(1A) = 2.61(3) Å, Mo– H(1B) = 2.58(3) A). We note that Sundermeyer and coworkers [5] have recently reported a number of bis(imido) indenyl complexes of molybdenum.

Fig. 3. Molecular structure of 5, without most H atoms, and with key atoms labelled.

belected bond lengths (Å) and angles (°) for 4					
Mo-C(1)	2.2103(17)	Mo-C(11)	2.3927(18)		
Mo-C(12)	2.4101(18)	Mo-C(13)	2.4983(18)		
Mo-C(14)	2.5081(18)	Mo-C(15)	2.4690(18)		
Mo-N(1)	1.7693(14)	Mo-N(2)	1.7610(15)		
N(1)-C(16)	1.385(2)	N(2)-C(28)	1.392(2)		
C(1)-Mo-N(1)	95.85(6)	C(1)-Mo-N(2)	95.91(7)		
N(1)-Mo-N(2)	106.33(7)	Mo-C(1)-C(2)	126.49(12)		
Mo-N(1)-C(16)	163.99(14)	Mo-N(2)-C(28)	171.11(14)		

Table 5 Selected bond lengths (Å) and angles (°) for **5**

8 ()	5		
Mo-C(1)	2.209(2)	Mo-N(1)	1.7674(16)
Mo-N(2)	1.7568(15)	Mo-C(35)	2.496(2)
Mo-C(36)	2.397(2)	Mo-C(37)	2.350(2)
Mo-C(38)	2.594(2)	Mo-C(39)	2.641(2)
C(1)-Mo-N(1)	101.36(8)	C(1)-Mo-N(2)	98.76(8)
N(1)–Mo–N(2)	106.90(8)	Mo-C(1)-C(2)	125.87(14)
Mo-N(1)-C(11)	157.41(14)	Mo-N(2)-C(23)	169.35(16)

The chloro ligands of 1 can be cleanly replaced by treatment with LiOBu^{*t*} to give the corresponding fourcoordinate species [Mo(OBu^{*t* $})(NAr)_2(CH_2CMe_2Ph)]$ (6), and with MeMgBr to give $[MoMe(NAr)_2$ (CH₂ CMe₂Ph)] (7). In the presence of PMe₃, the latter reaction gives a five-coordinate adduct $[MoMe(PMe_3)$ (NAr)₂(CH₂ CMe₂Ph)] (8), the NMR data of which

Fig. 4. Molecular structure of **10**, without most H atoms and minor disorder components, and with key atoms labelled.

Table 6 Selected bond lengths (\AA) and angles (°) for 10 C₂H

contain a doublet (${}^{3}J_{\text{HP}}$ 4.5 Hz) for the methyl groups at ca. 0.8 ppm (1 H), and a singlet (ca. -36.5 ppm) in the 31 P NMR spectrum.

Interaction of 1 with LiNHAr in diethyl ether at -78 °C gives an orange solution from which Mo(N-HAr)(NAr)₂(CH₂CMe₂Ph)] (9) can be isolated together with a second product $\{[Mo(NAr)_2(CH_2CMe_2Ph)]_2$ $(\mu$ -O) { (10), which has been structurally characterized (Fig. 4, Table 6). The molecule (approximate C_2 axis through O(1)) consists of two tetrahedral [Mo(NAr)₂ (CH₂CMe₂Ph)] fragments linked by a pseudo-linear oxo bridge $(Mo-O-Mo = 157.61(9)^\circ)$. The similar Mo-N(imido) bond lengths 1.7467(19)-1.7572(19) Å and Mo-N-C angles 156.23(16)°-164.57(18)° are consistent with all imido ligands acting as four-electron donors. There is evidence of an α -agostic interaction involving Mo(2): Mo(2)–H(11A) 2.51(3) Å, Mo(2)–H(11B) 2.67(3) A. Disorder in the alkyl group attached to Mo(1) precludes an assessment of any α -agostic interaction for it. The Mo-C-C angles of 117.37(17)° and 118.05(16)° are somewhat smaller than those found in 4 $(126.49(12)^{\circ})$ and 5 $(125.87(14)^\circ)$, doubtless a reflection of the lack of steric congestion provided by the presence of the oxo ligand (cf. 1 (115.55(12)°). A number of systems involving μ -O ligation in the presence of terminal imido groups have been structurally characterised [6]. The origin of the oxo group in 10 is uncertain. It is possible that oxygen could be extracted from the solvent diethyl

selected bond lengths (A) and an	Igles () for $10.C_5H_{12}$		
Mo(1)–O	1.9010(15)	Mo(1)–C(1)	2.150(2)
Mo(1)–N(1)	1.7572(19)	Mo(1)–N(2)	1.7467(19)
Mo(2)–O	1.8996(15)	Mo(2)–C(11)	2.143(2)
Mo(2)–N(3)	1.7528(19)	Mo(2)–N(4)	1.7511(19)
N(1)-C(21)	1.397(3)	N(2)-C(33)	1.392(3)
N(3)-C(57)	1.395(3)	N(4)-C(45)	1.401(3)
O-Mo(1)-C(1)	114.17(8)	O-Mo(1)-N(1)	113.77(8)
O-Mo(1)-N(2)	113.93(8)	C(1)–Mo(1)–N(1)	102.11(8)
C(1)–Mo(1)–N(2)	101.92(9)	N(1)–Mo(1)–N(2)	109.72(9)
O-Mo(2)-C(11)	111.31(8)	O-Mo(2)-N(3)	113.43(8)
O-Mo(2)-N(4)	113.19(8)	C(11)–Mo(2)–N(3)	104.30(9)
C(11)–Mo(2)–N(4)	102.91(9)	N(3)–Mo(2)–N(4)	110.84(9)
Mo(1)-O-Mo(2)	157.61(9)	Mo(1)–C(1)–C(2)	117.37(17)
Mo(1)-C(1)-C(2A)	118.4(3)	Mo(2)-C(11)-C(12)	118.05(15)
Mo(1)-N(1)-C(21)	156.23(16)	Mo(1)-N(2)-C(33)	164.57(18)
Mo(2)-N(3)-C(57)	160.24(17)	Mo(2)–N(4)–C(45)	162.46(18)

341

ether; however, the formation of oxo species from water is well known; Sundermeyer et al. [7] have demonstrated the complete conversion of imido molybdenum species to their oxo counterparts.

In conclusion, the chemistry described herein shows that complexes of the form [MoCl(NAr)₂R] (R = CH₂ CMe₂Ph or CH₂CMe₃; Ar = 2,6-Pr^{*i*}₂C₆H₃) provide a useful entry, via chloride substitution reactions, to fourand five-coordinate bis(imido) monoalkyl chemistry.

3. Experimental

3.1. General

All manipulations were carried out under an atmosphere of nitrogen using standard Schlenk and cannula techniques or in a conventional nitrogen-filled glovebox. Solvents were refluxed over an appropriate drying agent, and distilled and degassed prior to use. Elemental analyses were performed by the microanalytical services of the Department of Chemistry at Durham, Medac Ltd. and at Imperial College. NMR spectra were recorded on a Varian VXR 400 S spectrometer at 400.0 MHz (¹H), 100.6 MHz (¹³C) and 100.0 MHz (³¹P); chemical shifts are referenced to the residual protio impurity of the deuterated solvent. IR spectra (nujol mulls, KBr or CsI windows) were recorded on Perkin-Elmer 577 and 457 grating spectrophotometers. $[MoCl_2(NAr)_2(dme)]$ and $[MoCl_2(NBu^t)(NAr)(dme)]$ were prepared by literature methods [8,9]. Trimethylphosphine was prepared by the method of Wolfsberger and Schmidbaur [10]. Grignard reagents were prepared from RCl and activated Mg in diethyl ether. All other chemicals were obtained commercially and used as received unless stated otherwise.

3.2. Preparation of $[MoCl(NAr)_2CH_2CMe_2Ph]$ (1)

To a solution of [MoCl₂(NAr)₂(dme)] (5.04 g, 8.3 mmol) in diethyl ether (ca. 100 cm³) at -78 °C was slowly added (over about 20 min) CH₂CMe₂PhMgCl (12.2 cm³, 0.68 M solution, 8.3 mmol) in diethyl ether (ca. 10 cm³). After slowly warming to ambient temperature and stirring for 12 h the orange suspension was filtered. The remaining solid was further extracted with diethyl ether $(2 \times 50 \text{ cm}^3)$ and pentane (50 cm^3) . The volatiles were removed from the combined extracts, affording a red solid. Extraction into pentane (ca. 60 cm³) and cooling $(-78 \ ^{\circ}C)$ gave 1 as orange-red crystals. Yield: 3.28 g, 64%. Found: C, 66.17; H, 7.80; N, 4.71%. MoClN₂C₃₄H₄₇ requires C, 66.39; H, 7.70; N, 4.55%. IR: 1599w, 1576m, 1569m, 1494m, 1467s, 1461s, 1456s, 1451s, 1446s, 1425s, 1377s, 1360s, 1324s, 1289s, 1273s, 1223m, 1190m, 1175m, 1158m, 1144m, 1103s, 1057s,

1043s, 1029s, 982s, 933m, 903w, 840w, 798s, 768m, 753s, 723m, 701s, 649w, 631w, 619w, 593w, 568m, 550s, 537s.

3.3. Preparation of $[MoCl(NAr)_2(CH_2CMe_3)]$ (2)

As for 1, but using $[MoCl_2(NAr)_2(dme)]$ (5.04 g, 8.3 mmol) and Me₃CCH₂MgCl (10.4 cm³, 0.8 M, 8.3 mmol). Yield: 40%. Found: C, 61.37; H, 7.75; N, 5.47%. MoClN₂C₂₉H₄₅ requires C, 62.98; H, 8.20; N, 5.06%. IR: 3058m, 2724m, 2660m, 1921w, 1858w, 1619w, 1585w, 1572w, 1520w, 1364 s, 1261m, 1231w, 1177w, 1143w, 1098m, 1056m, 1045m, 1018m, 934w, 863w, 797 vs, 754s, 662vw, 634vw, 618vw, 580vw, 561vw, 535w, 505vw, 488vw, 461w, 386 vw, 374w, 352s, 328m. M.S. (CI): 590 [M + H + Cl]⁺, 554 [M + H]⁺, 482 [M–CH₂CMe₃]⁺, 440 [M–CH₂CMe₃]⁺,

3.4. Preparation of [MoCl(NAr)(NBu^t)(CH₂CMe₂ Ph)] (3)

As for 1, but using $[MoCl_2(NAr)(NBu')(dme)]$ (4.88 g, 9.7 mmol) and PhMe₂CCH₂MgCl (12.9 cm³, 0.75 *M*, 9.7 mmol). Yield: 3.5 g, 71%. Found: C, 60.96; H, 7.74; N, 5.43%. MoN₂C₂₆H₃₉ requires C, 61.11; H, 7.69; N, 5.48%. IR: 3057m, 2725m, 2670m, 1599m, 1581w, 1494m, 1452vs, 1361vs, 1331s, 1308 m, 1283 s, 1215vs, 1190m, 1158w, 1132m, 1116w, 1030m, 982s, 934m, 903w, 805w, 794w, 753s, 697s, 668w, 615w, 592w, 552w, 514w, 454w, 443w, 384m, 357w, 338s, 324m. M.S: (CI) 512 [M + H]⁺; (EI) 511 [M]⁺, 476 [M–Cl + H]⁺, 378 [M–CH₂CMe₂Ph]⁺.

3.5. Preparation of $[MoCp(NAr)_2(CH_2CMe_2Ph)]$ (4)

To **1** (1.02 g, 1.66 mmol) and LiCp (0.12 g, 1.66 mmol) was added cold (-78 °C) diethyl ether (ca. 30 cm³). After stirring for 24 h, the volatiles were removed and the dark red solid was extracted into pentane; cooling (-40 °C) afforded **4**. Yield: 0.52 g, 49%. Found: C, 72.72; H, 8.35; N, 4.47%. MoN₂C₃₉H₅₂ requires C, 72.65; H, 8.13; N, 4.56%. IR: 3129w, 3088w, 3052w, 1599w, 1586m, 1494m, 1422s, 1360s, 1336, 1262s, 1224m, 1192m, 1175m, 1159m, 1136m, 1098s, 1075m, 1062m, 1033m, 1020m, 966s, 931m, 834w, 806s, 768s, 746s, 704s, 615w, 599w, 561m, 538m. M.S. (CI) 647 [M + H]⁺, 513 [M–CH₂CMe₂Ph]⁺, 471 [M–CH₂CMe₂Ph–CHCMe₂]⁺, 350 [M–CH₂CMe₂Ph]⁺; (FAB⁺, *m/z*) 646 [M]⁺, 513 [M–CH₂CMe₂Ph]⁺.

3.6. Preparation of $[MoInd(NAr)_2(CH_2CMe_2Ph)]$ (5)

As for 4, but using 1 (0.77 g, 1.25 mmol) and Li(Indenyl) (0.15 g, 1.25 mmol), affording 5 as red prisms.

Yield: 0.56 g, 64%. Found: C, 66.42; H, 6.63; N, 4.59%. MoN₂C₃₄H₅₁ requires C, 66.38; H, 6.92; N, 4.69%. IR: 2556w, 2721w, 2692w, 2612w, 2360w, 2342w, 1949w, 1939w, 1912w, 1707w, 1694w, 1666w, 1651w, 1634w, 1622w, 1597m, 1596m, 1567m, 1539w, 1513w, 1493s, 1463s, 1456s, 1435s, 1429s, 1418s, 1377s, 1359s, 1322s, 1304s, 1284s, 1261s, 1224s, 1186s, 1178s, 1158m, 1151m, 1101s, 1087m, 1059s, 1045m, 1034s, 1001w, 975s, 942s, 909m, 841m, 805s, 798m, 765s, 757s. M.S. (CI) 696 $[M + H]^+$; (EI, *m/z*) 695 $[M]^+$, 580 $[M-C_9H_7]^+$, 443 $[M-C_9H_7-C_6H_3'Pr_2]^+$.

3.7. Preparation of [Mo(OBu^t)(NAr)₂(CH₂CMe₂Ph)] (6)

To 1 (0.98 g, 1.6 mmol) and LiOBu^t (0.13 g, 1.6 mmol) was added cold (-78 °C) diethyl ether. After stirring at 25 °C for 12 h, the volatiles were removed in vacuo, and the residue was extracted with pentane (ca. 20 cm³). Cooling (-40 °C) afforded **6** as red needles. Yield 0.43 g, 42%. Found: C, 69.96; H, 8.37; N, 4.60%. MoON₂C₃₈H₅₆ requires C, 69.92; H, 8.65; N, 4.29%. IR: 3056m, 2754w, 2722w, 2671w, 1599m, 1584m, 1569m, 1539w, 1516w, 1495m, 424s, 1361s, 1324s, 1278vs, 1250s, 1235m, 1224m, 1168s, 1100m, 1072m, 1057m, 1045m, 1032m, 982vs, 952vs, 838w, 787s, 751vs, 711m, 698s, 661w, 635w, 596m, 571m, 563m, 538w, 505m, 476vw, 449w, 428w. M.S. (CI) 654 $[M + H]^+$, 596 $[M^{-t}Bu]^+$; (EI, m/z) 786 $[M + CH_2CMe_2Ph]^+$, 726 $[M + O'Bu]^+$, 654 $[M + H]^+$, 596 [M-^{*t*}Bu]⁺, 580 [M-O^{*t*}Bu]⁺, 520 [M-CH₂CMe₂Ph]⁺, 463 $[M-CH_2CMe_2Ph-^tBu]^+$.

3.8. Preparation of $[MoMe(NAr)_2(CH_2CMe_2Ph)]$ (7)

As for **6**, but using **1** (1.02 g, 1.66 mmol) and MeMgI (0.55 cm³, 3.0 *M* solution, 1.66 mmol), affording **7** as orange crystals. Yield: 0.45 g, 46%. Sticky nature of product resulted in inconsistent microanalysis. IR: 3054s, 2721m, 1599m, 1576m, 1569m, 1494m, 1467vs, 1456vs, 1451vs, 1446vs, 1425s, 1360s, 1324s, 1289m, 1273s, 1223m, 1190m, 1175m, 1158m, 1144m, 1103s, 1057m, 1043m, 1029m, 982m, 933m, 903w, 865w, 856w, 840w, 798s, 768m, 753vs, 701s, 666w, 649w, 631w, 619m, 593m. M.S. (CI) 596 $[M + H]^+$, 581 $[M-CH_3 + H]^+$, 477 $[M-CMe_2Ph + H]^+$, 463 $[M-CH_2Me_2Ph + H]^+$.

3.9. Preparation of [MoMe(PMe₃)(NAr)₂(CH₂CMe₂ Ph)] (8)

Pentane (30 cm³) was added to an ampoule charged with 7 (0.5 g, 0.84 mmol). The resultant red solution was frozen (-198 °C) and placed under vacuum. Trimethylphosphine (0.076 g, 1.0 mmol) was added to the solution (vacuum-transfer) and the mixture was allowed to warm slowly to room temperature. The dark orange

solution obtained was filtered and concentrated under reduced pressure. Cooling (-35 °C) overnight afforded **8** as an orange microcrystalline solid (Yield: 0.30 g, 53%). Found: C, 67.85; H, 8.96; N, 4.19%. MoPN₂C₃₈H₅₉ requires C, 68.04; H, 8.87; N, 4.18%. IR: 3028m, 2721w, 1597m, 1586m, 1567m, 1539w, 1493s, 1456vs, 1435vs, 1429vs, 1418vs, 1359vs, 1322vs, 1304s, 1284vs, 1261vs, 1224m, 1186m, 1178m, 1158m, 1151m, 1101s, 1087m, 1059s, 1045m, 1034s, 1001vw, 975vs, 942vs, 909m, 841m, 805m, 798m, 765vs, 757vs, 700vs, 667m, 615m. ³¹P NMR (C₆D₆, 298K): δ –36.49 (s, *P*Me₃).

3.10. Preparation of $[Mo(NHAr)(NAr)_2(CH_2CMe_2 Ph)]$ (9)

Chilled (-78 °C) diethyl ether was added to a solid mixture of **1** (0.59 g, 9.6 mmol) and LiNHAr (0.18 g, 9.6 mmol) at -78 °C. The resultant solution was allowed to warm to room temperature, stirred for 1 h and then filtered. Volatiles were removed in vacuo and extraction into pentane followed by cooling (-35 °C) afforded orange crystals of **9**. Yield: 0.32 g, 44%. Found: C, 72.43; H, 8.46; N, 5.35%. MoN₃C₄₆H₆₅ requires C, 73.08; H, 8.67; N, 5.56%. IR: 3303m, 1569m, 1362m, 1320s, 1287m, 1267s, 1245m, 1223m, 1191s, 1158m, 1109m, 1071m, 1056m, 1044m, 1031m, 981s, 932m, 904m, 886m, 855s, 837w, 796s, 764m, 750vs, 697s, 634w, 625w, 552m, 508m, 480m, 456w, 421m. M.S. (CI) 756 [M]⁺; (EI, *m/z*) 756 [M]⁺, 624 [M-CH₂CMe₂Ph]⁺, 581 [M-CH₂CMe₂Ph-CHCMe₂]⁺.

3.11. Preparation of {[Mo(NAr)₂(CH₂CMe₂Ph)]₂ (µ-O)} (10)

3.11.1. From LiNHAr

To an ampoule charged with a solid mixture of 1 (0.59 g, 0.96 mmol) and LiNHAr (0.18 g, 0.96 mmol) at -78 °C was added chilled (-78 °C) diethyl ether (50 cm³). The resultant solution was allowed to warm to room temperature and stirred for 48 h. All volatile components were removed under reduced pressure and the mixture heated to 50 °C for 12 h. The reaction mixture was then redissolved in diethyl ether (50 cm³), stirred for a further 48 h, volatile components removed under reduced pressure, then heated to 50 °C. This process was repeated a further three times. The resultant dark red oil was extracted into minimal pentane and cooled to -35 °C, affording red–orange, solvent-dependent crystals of 10 (Yield: 0.73 g, 65%).

3.11.2. From LiNHBu^t

Chilled (-78 °C) diethyl ether was added to a solid mixture of **1** (0.95 g, 1.54 mmol) and LiNHBu^t (0.122 g, 1.54 mmol) at -78 °C. The resultant solution was al-

Table 7 Crystallographic data

Compound	1	4	5	$10 \cdot \text{pentane}$
Formula	C34H47ClMoN2	$C_{39}H_{52}MoN_2$	$C_{43}H_{54}MoN_2$	$C_{68}H_{94}Mo_2N_4O\cdot C_5H_{12}$
М	615.1	644.8	694.8	1247.5
Crystal system	monoclinic	monoclinic	orthorhombic	triclinic
Space group	$P2_1/c$	$P2_1/n$	$P2_{1}2_{1}2_{1}$	$P\overline{1}$
a (Å)	16.6488(13)	17.5013(12)	12.8531(9)	12.5275(5)
b (Å)	16.2054(13)	11.3724(8)	26.3545(17)	13.3471(6)
<i>c</i> (Å)	11.9638(9)	19.2673(14)	11.1511(8)	21.2886(9)
α (°)				78.547(2)
β (°)	92.260(2)	113.065(1)	83.159(2)	
γ (°)				86.315(2)
$U(\text{\AA}^3)$	3225.3(4)	3528.3(4)	3777.3(5)	3460.8(3)
Ζ	4	4	4	2
$D_{\rm c} ~({\rm g}~{\rm cm}^{-3})$	1.267	1.214	1.222	1.197
$\mu \text{ (mm}^{-1}\text{)}$	0.51	0.40	0.38	0.41
Data measured	19 428	23 377	24 256	27 405
Unique data	7350	8096	8790	15 259
R _{int}	0.0319	0.0266	0.0203	0.0168
Parameters	374	422	432	854
$R (F, F^2 > 2\sigma)$	0.0270	0.0297	0.0262	0.0350
R_w (F^2 , all data)	0.0712	0.0710	0.0650	0.0893
Max., min. el. density (eÅ ⁻³)	0.38, -0.51	0.39, -0.55	0.48, -0.40	0.88, -0.56

lowed to warm to room temperature and stirred for 2 days. All volatiles were removed in vacuo and the resultant solid redissolved in diethyl ether (50 cm³) and stirred for a further 2 days. This process was repeated a further three times. The resultant orange solid was extracted into pentane and cooled (-35 °C) to afford orange, solvent-dependent crystals of **10** (Yield: 1.11 g, 61%). Found: C, 69.43; H, 8.26; N, 4.95%. Mo₂ON₄C₆₈H₉₄ requires C, 69.49; H, 8.06; N, 4.77%. IR: 3054m, 1598w, 1568m, 1495m, 1424vs, 1362m, 1333s, 1322s, 1273s, 1223w, 1178w, 1158w, 1100m, 1076m, 1058m, 1045m, 1031m, 983m, 933w, 903w, 796s, 770vs, 698m, 644w, 594w, 559w, 537w, 456w. M.S. (EI) 604 [1/2M + O]⁺.

3.12. Preparation of Mo(NAr)₂(CH₂CMe₂Ph)(NHBu^t) (11)

Chilled (-78 °C) diethyl ether was added to a solid mixture of 1 (0.95 g, 1.55 mmol) and LiNHBu^t (0.12 g, 1.55 mmol) at -78 °C. The resultant solution was allowed to warm to room temperature and stirred for 1 h. The resultant dark orange solution was filtered from the white precipitate and all volatile components removed under reduced pressure, yielding an orange solid. Extraction into pentane followed by removal of volatiles in vacuo afforded 11 as an orange oil (yield: 0.41 g, 41%). IR: 3265m, 3057s, 3021s, 2965–2869vs, 2802w, 1599m, 1586w, 1570vw, 1495s, 1446vs, 1425vs, 1382s, 1361s, 1337vs, 1324vs, 1275vs, 1262vs, 1206s, 1158m, 1143m, 1100, 1057s, 1045s, 1030vs, 1020vs, 983s, 970s, 933m, 909m, 867w, 840w, 797s, 785s, 768s, 751s, 736m 700s,

657m, 623m, 602m, 586m, 554m, 539w, 452w, 436w. M.S. (EI): 595 [M–C(CH₃)₃]⁺.

3.13. X-ray crystallography

Table 7 gives information on the crystal structure determinations for 1, 4, 5 and 10. All data were measured at 160 K with Mo K α radiation ($\lambda = 0.71073$ Å) on a Siemens SMART CCD diffractometer, using fineslice ω scans [11]. Corrections for absorption were based on multiple and symmetry-equivalent reflections [12]. The structures were solved by direct methods, and refined on F^2 values for all unique data. Anisotropic displacement parameters were refined for all non-hydrogen atoms except low-occupancy disorder components, and H atoms were constrained except for metal-bonded CH₂ groups, which were freely refined to investigate α -agostic interactions. Two-fold disorder was resolved and refined for some isopropyl substituents, and for one complete ligand in 10, with the aid of restraints. For the noncentrosymmetric 5, the absolute structure was confirmed by refinement of an enantiopole parameter to 0.00(2) [13].

4. Supplementary material

Crystallographic data (excluding structure factors) have been deposited with the Cambridge Crystallographic Data Centre, CCDC no. 217025, 217026, 217027 and 217028 for compounds 1, 4, 5 and 10, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CD2 1EZ, UK (fax: +44-1223336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk).

Acknowledgements

The EPSRC is gratefully acknowledged for grants.

References

- (a) A. Bell, W. Clegg, P.W. Dyer, M.R.J. Elsegood, V.C. Gibson, E.L. Marshall, J. Chem. Soc., Chem. Commun. (1994) 2547;
 - (b) A. Bell, W. Clegg, P.W. Dyer, M.R.J. Elsegood, V.C. Gibson, E.L. Marshall, J. Chem. Soc., Chem. Commun. (1994) 2247.
- [2] V.C. Gibson, C. Redshaw, W. Clegg, M.R.J. Elsegood, U. Siemeling, T. Türk, J. Chem. Soc., Dalton Trans. (1996) 4513.
- [3] (a) D.L. Morrison, D.E. Wigley, J. Chem. Soc., Chem. Commun. (1995) 79;
- (b) D.L. Morrison, D.E. Wigley, Inorg. Chem. 34 (1995) 2610.
 [4] V.C. Gibson, E.L. Marshall, C. Redshaw, W. Clegg, M.R.J. Elsegood, J. Chem. Soc., Dalton Trans. (1996) 4197.
- [5] U. Radius, J. Sundermeyer, K. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem. 628 (2002) 1226.

- [6] (a) A.A. Danopoulos, G. Wilkinson, B. Hussain-Bates, M.B. Hursthouse, J. Chem. Soc., Dalton Trans. (1991) 269; (b) A.A. Danopoulos, G. Wilkinson, T.K.N. Sweet, M.B. Hursthouse, Polyhedron 15 (1996) 873; (c) V. Saboonchian, A.A. Danopoulos, A. Gutierrez, G. Wilkinson, D.J. Williams, Polyhedron 10 (1991) 2241; (d) A.A. Danopoulos, G. Wilkinson, D.J. Williams, J. Chem. Soc., Chem. Commun. (1991) 181; (e) H.W. Lam, G. Wilkinson, D.J. Williams, Polyhedron 10 (1991) 2647: (f) A. Gutierrez, G. Wilkinson, B. Hussain-Bates, M.B. Hursthouse, Polyhedron 9 (1990) 2081; (g) J.B. Strong, B.S. Haggerty, A.L. Rheinhold, E.A. Maatta, Chem. Commun. (1997) 1137, and references therein; (h) V.C. Gibson, A.J. Graham, D.L. Ormsby, B.P. Ward, A.J.P. White, D.J. Williams, J. Chem. Soc., Dalton Trans. (2002) 2597. [7] J. Sundermeyer, U. Radius, C. Burschka, Chem. Ber. 125 (1992) 2379.
- [8] H.H. Fox, K.B. Yap, J. Robbins, S. Cai, R.R. Schrock, Inorg. Chem. 31 (1992) 2287.
- [9] R.C.B. Copley, P.W. Dyer, V.C. Gibson, J.A.K. Howard, E.L. Marshall, W. Wang, B. Whittle, Polyhedron 15 (1996) 3001.
- [10] W. Wolfsberger, H. Schmidbaur, Synth. React. Inorg. Met.-Org. Chem. 4 (1974) 149.
- [11] SMART and SAINT software for area detectors, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA, 1994.
- [12] G.M. Sheldrick, SHELXTL Manual Version 5, Siemens Analytical X-ray Instruments Inc., Madison, WI, USA, 1994.
- [13] H.D. Flack, Acta Crystallogr., Sect. A 39 (1983) 876.